

2QP0435T12-EQ2 驱动器

特征

RoHS

COMPLIANT

- 双通道 IGBT 驱动器
- 功率器件最高电压 1200V
- 电源电压输入 +15V
- 单通道驱动功率 4W, 峰值电流 ±35A
- 适配 EconoDUAL 封装的 IGBT 模块两并联方案
- 集成隔离 DC/DC 电源
- 集成原边/副边电源欠压保护
- 集成有源钳位
- 集成 VCE 短路保护

主要参数	
V _{CC}	15V
V _G	+15V, -10V
P, MAX	4W
I _G , MAX	±35A
f _S , MAX	8kHz
T _A	-40°C ~85°C
绝缘耐压	4000Vac

描述

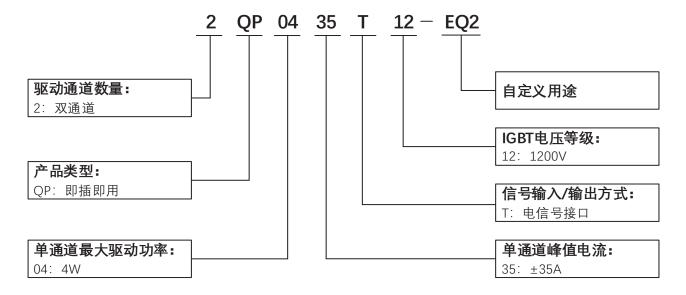
2QP0435T12-EQ2 是一款基于青铜剑自主开发的 ASIC 芯片设计而成的双通道、中功率、高可靠性驱动器, 针对中功率、高可靠性的应用领域而设计。

2QP0435T12-EQ2 适用于 1200V 的 EconoDUAL 封装的 IGBT 模块两并联方案,即插即用的功能使驱动板可直接焊接在 IGBT 上使用,无需要转接处理,可安全可靠的驱动和保护 IGBT 模块。

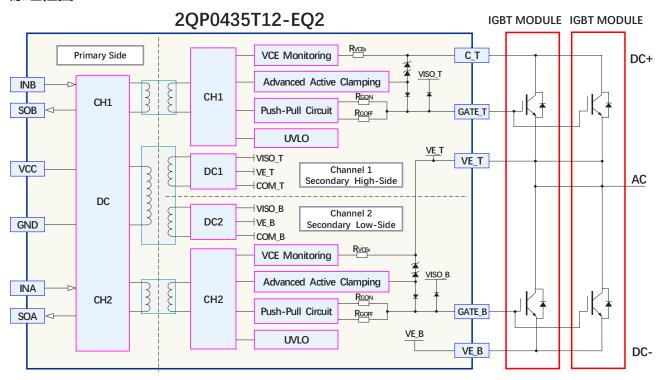
典型应用

- SVG
- APF
- 大功率开关电源
- 轨交辅变电源

机械尺寸

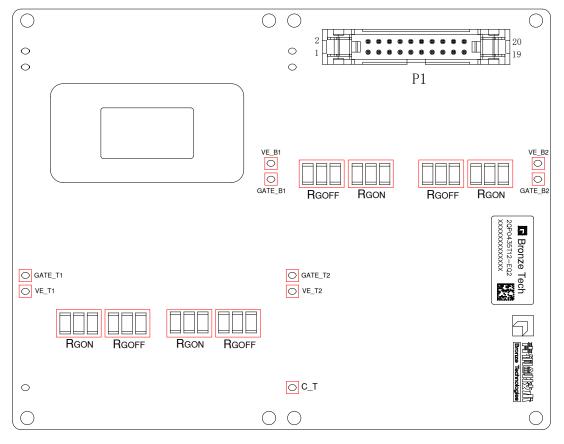

机械尺寸图:参见第11页

连接图



型号定义

原理框图



接口定义

P1 端子接口定义

管脚	符号	说明	管脚	符号	 说明
1	N.C	不使用	11	INB	B 通道 (上管) 触发信号输入
2	GND	信号 / 功率地	12	GND	信号 / 功率地
3	N.C	不使用	13	SOA	A 通道 (下管) 故障信号输出
4	GND	信号 / 功率地	14	GND	信号 / 功率地
5	VCC	供电电源输入 +	15	INA	A 通道(下管)触发信号输入
6	GND	信号 / 功率地	16	GND	信号 / 功率地
7	VCC	供电电源输入 +	17	N.C	不使用
8	GND	信号 / 功率地	18	GND	信号 / 功率地
9	SOB	B 通道(上管)故障信号输出	19	N.C	不使用
10	GND	信号 / 功率地	20	GND	信号 / 功率地

注: 默认配置接口 20pin 牛角接头, 型号为: 230-010-820-209, 品牌: 正凌。

2QP0435T12-EQ2 接口示意图

参数

绝对限值

参数	MIN	MAX	UNIT
VCC to GND		15.5	V
IN1、IN2, SO1、SO2 to GND		15	V
供电电源	14.5	15.5	V
门极驱动功率 1)		4	W
门极驱动电流	-35	35	А
母线电压 ²⁾		1200	V
供电电源最大电流 3)		300	mA
最大开关频率		8	kHz
原 / 副边绝缘电压		4000	V
副 / 副边绝缘电压		4000	V
运行温度 T _A	-40	+85	°C
存储温度 Ts	-45	+85	°C
湿度 4)		95	%
海拔高度 5)		3000	m

注: 1) 在 TA 允许温度范围内, 单通道最大输出功率。

- 2) 默认有源钳位参数下允许的最大母线电压。
- 3) 驱动板额定工况的最大值。
- 4) 不允许出现凝露现象。
- 5) 超过最大海拔高度应用请咨询深圳青铜剑技术公司。

www.qtjtec.com

供电电源

环境温度 TA=25℃,除非另有说明。

参数	测试条件	MIN	ТҮР	MAX	UNIT
供电电压 Vcc	VCC to GND		15		V
转换效率 1)	V _{CC} =15V		80		%
静态电流 looq ²⁾	Vcc=15V, 空载	80		mA	
供由由法	V _{CC} =15V,空载,f _{SW} =8kHz	143		mA	
供电电流	Vcc=15V,100nF 负载,fsw=8kHz,50% 占空比		290		mA
副边全压 Vcco ³⁾	VISO to COM	25		V	
副边正压 V+	VISO to VE		15		V
副边负压 V-	COM to VE		-10		V

注: 1) 驱动器内部隔离变压器转换效率。

- 2) 当只接 +15V 电源、无信号输入且空载情况下测得的输入电流,即为静态电流。
- 3) 副边全压/正压/负压典型值为空载测试值。

输入

环境温度 TA=25℃,除非另有说明。

参数		测试条件	MIN	TYP	MAX	UNIT
	电压限值	V _{CC} =15V		15		V
IN1, IN2 输入电压 V _{IN} 1)	开通门槛 V _{INH}	V _{CC} =15V		3.8		V
1137 (3)22 (111)	关断门槛 V⋈L	V _{CC} =15V		2.9		V
注: 1)输入端需考虑电阻分压,详见功能描述"触发信号 INx 输入"。						

输出

环境温度 TA=25℃,除非另有说明。

参数	Ż	测试条件	MIN	ТҮР	MAX	UNIT
	开通 ON-State	V _{CC} =15V,空载		15		V
│ 门极输出电压 V _G	关断 OFF-State	V _{CC} =15V,空载		-10		V
>	开通 ON-State	$V_{CC}=15V$, $R_{GON}=2.35\Omega$			35	А
│ 门极电流 I _G	关断 OFF-State	$V_{CC}=15V$, $R_{GOFF}=5\Omega$	-35			А
	正常状态	$V_{CC}=15V$, $R_{SO}=10k\Omega$		15		V
SO 输出电压 V _{so} ¹⁾	保护状态	$V_{CC}=15V$, $R_{SO}=10$ k Ω		0.7		V
SO 端电流 I _{so}		V_{CC} =15V, R_{SO} =10k Ω			20	mA
注: 1) Rso 为保护输出单	端 SO 上拉电阻,默认	· 为 15V 上拉,可根据客户需求调整。				

保护

环境温度 TA=25℃,除非另有说明。

参	数	测试条件	MIN	ТҮР	MAX	UNIT
原边欠压保护	触发 V _{CCUV+}	V _{CC} =15V, VCC-GND		12.5		V
阈值电压 1)	恢复 V _{CCUVR+}	V _{CC} =15V, VCC-GND		13.0		V
副边正压欠压	触发 V _{UV+}	V _{CC} =15V, VISO-VE		12.0		V
保护阈值电压恢复	恢复 V _{UVR+}	V _{CC} =15V, VISO-VE		12.5		V
副边负压欠压 触发 V _{UV-}		V _{CC} =15V, VE-COM		-5.0		V
保护阈值电压	恢复 V _{UDVR-}	V _{CC} =15V, VE-COM		-6.0		V
短路保护阈值甲	豆路保护阈值电压 V _{REF} V _{CC} =15V , R _{REF} =68kΩ 10.2			V		
短路保护响应时间 tsc ²⁾		V _{CC} =15V, R _A =120kΩ, C _A =33pF		6.5		us
保护锁定时间t	L _B	R _{TB} =150kΩ		110		ms
			•			

注: 1) 欠压保护逻辑参见图 2。

时序

环境温度 TA=25℃,除非另有说明。

参	数	测试条件	MIN	ТҮР	MAX	UNIT
传输延时 ¹⁾	开通延时 toN	V _{CC} =15V, 空载		330		ns
	关断延时 toff	V _{CC} =15V, 空载	1100		ns	
输出信号上统	输出信号上升时间 t _r R _{GON} =2.35Ω, C _{GE} =22nF 1150			ns		
输出信号下降时间 t _f R _{GOF}		R_{GOFF} =5.0 Ω , C_{GE} =22nF		2180		ns
注: 1)开通传输延时为输入信号上升沿 10% 到门极信号上升沿 10%,关断传输延时为下降输入信号沿 10% 到门极信号下降沿 10%。						

²⁾ 采用串电阻检测方式。

安全和抗干扰

环境温度 TA=25℃,除非另有说明。

	参数	数值	UNIT
绝缘耐压 1)		4000	V
原边 - 副边	电气间隙	12	mm
尿边 - 剛边 	爬电距离	12	mm
	电气间隙	6.5	mm
副边 - 副边	爬电距离	6.5	mm
ESD 静电防护	接触放电	±4	kV
630 静电闪护	空气放电	±8	kV
电快速瞬变脉冲群	 亢扰度	±3	kV
注: 1)测试条件为 4000V,50Hz 交流电压,1min。			

功能描述

电源及电源监控

这款驱动器配有 DC/DC 电源,可实现电源和门极驱动电路的电气隔离。基本原理框图(如图 1 所示)。

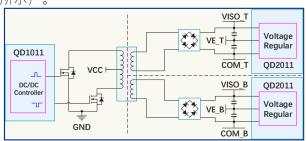
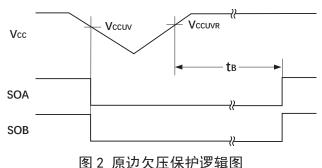


图 1 电源原理框图


驱动器的原边及两个通道的副边都分别配备有 电源监控电路,并实施欠压保护。

注意:驱动器需要稳定的供电电压!

原边电源监控

原边对电源电压 VCC 进行监控并实施欠压保护动作。当 VCC 逐渐降低至欠压保护触发电压 VCCUV时,将触发欠压保护。两个副边驱动电路将锁定在关断状态,使 IGBT 保持在关断;同时输出保护信号 SOA 和 SOB(参见图 2)。

当 Vcc 恢复到欠压恢复值 VccuvR,驱动器将继续保持保护状态一个锁定时间 tB,再释放驱动电路关断锁定状态,并恢复保护信号 SOA 和 SOB。

副边电源监控

副边电压在供电电压降低或负载超载情况下,会发生电压下降。当副边电压全压 Vcco (VISO 至 COM 下同) 下降时,驱动器会优先稳住正压 V+ (VISO 至 VE 下同) 为 +15V,负压 V- (COM 至 VE 下同)逐渐抬升。当 V- 抬升到 -5V 后,开始稳住负压,正压 V+ 开始跟随全压 Vcco (VISO 至 COM,下同)下降。当 V+ 下降至欠压保护阈值 Vuv+,将启动副边欠压保护。

副边欠压保护首先会将本通道驱动锁定在关断状态,确保对应IGBT关断。同时向原边发送信号,使得原边输出对应通道的保护信号 SOx。此时,另一通道不会受影响,仍能正常开关,其对应的 SO信号为正常状态。

当故障情况解除, Vcco 恢复后, 驱动器会先恢复正压, 再恢复负压。保护闭锁状态和 SO 信号将会等待一个闭锁时间 t_B, 再恢复正常。

副边电压调节和欠压保护逻辑(如图3所示)。

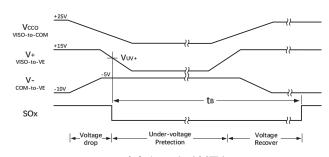


图 3 副边欠压保护逻辑图

触发信号 INx 输入

触发信号由 INx 端口输入 (参见图 4),默认状态 R46/R49=4.7k Ω ,RL1/RL3=4.7k Ω ,RL2/RL4 未焊接,C16/C30=100pF,需要改变输入信号电平时,可通过焊接不同的 RL2/RL4 电阻来改变输入信号开通门槛 V_{INH} 、关断门槛 V_{INL} 。

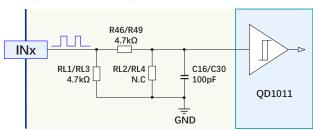


图 4 INx 输入电路图

传输逻辑

驱动器 QD1011 芯片 MOD 脚接 GND,根据芯片特性,该状态下为直接模式。传输逻辑(参见图 5)。在这种模式下,两个通道各自独立,没有联系。输入 INA 对应 B 通道(下管),而输入 INB对应 T 通道(上管);高电平则将对应的 IGBT 开通,低电平将对应的 IGBT 关断。

注意: 此时, 触发信号间的死区时间由前端控制系统产生, 请确保死区时间合适以避免发生上下管直通短路。

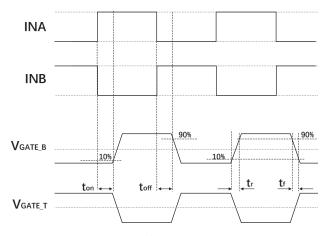


图 5 传输逻辑信号图

保护信号输出

保护信号输出端 SOx 内部为漏极开路形式,(参见图 6)。正常情况下,QsO 截止,SOx 输出端为高电平。当驱动器的某个通道出现保护时,对应通道的 QsO 将导通,SOx 变为低电平(接地)。默认状态 $RF1/RF2=10k\Omega$, $RF3/RF4=33\Omega$,QsO 管的过电流能力为 20mA。

SO1 和 SO2 可以连接在一起,用以表达整个驱动的保护信息,但是分开表达可以实现快速且准确的诊断。

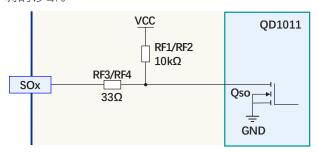


图 6 保护信号输出逻辑图

IGBT 的开通和关断

当需要开通IGBT时,驱动器内部芯片内的Qon管打开,Qoff管关闭,通过开通门极电阻RGON对IGBT的门极进行充电,使IGBT开通。

当需要关断 IGBT 时,驱动器内部芯片内的 QoFF 管打开,QoN 管关闭,通过关断门极电阻 RGOFF 对 IGBT 的门极进行放电,使 IGBT 关断。

门极电阻 RGON 和 RGOFF 的选择,用户可咨询我们技术支持来进行设置,并进行出厂预配置。在安装到对应的 IGBT 模块上时,请确保已经安装上合适的门极电阻。

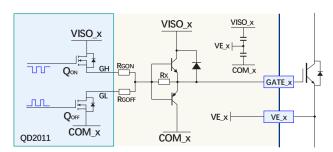


图 7 门极驱动电路图

高级有源钳位

快速的关断 IGBT 可能导致电压尖峰,电压尖峰会随母线电压和负载电流升高而增加,过高的电压尖峰会对 IGBT 的安全造成威胁。关断电压尖峰主要与系统杂散电抗 Ls 和 IGBT 关断电流变化率 dl/dt 有关,通过调整关断门极电阻 RGOFF 可适当减少dl/dt,从而适当减少尖峰电压;但 Ls 的影响不可避免,特别是在短路和过流等大电流工况下,情况尤其恶劣。故此,驱动器配备了有源钳位电路,以抑制过电压尖峰,可以有效的防止 IGBT 的过压损坏。

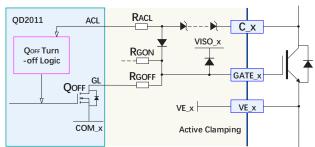


图 8 高级有源钳位电路原理框图

有源钳位电路的原理(参见图 8)。在 IGBT 的集电极和门极之间用瞬态抑制二极管(TVS)建立一个反馈通道,同时连接内部芯片的控制电路。当 IGBT 的 VCE 尖峰电压超过一个击穿阈值时,TVS 串将打通,芯片内部控制电路启动使得关断驱动管 QOFF 关断;同时 TVS 串流过的电流将会注入 IGBT 门极,使得 IGBT 仍保持部分导通,从而令 IGBT 的 VCF 得到抑制。

驱动器的预设击穿阈值如表 1 所示。

表 1 有源钳位阈值表(T_A=25°C)

驱动型号	母线电压	击穿阈值
2QP0435T12-EQ2	1200V	1010V

IGBT 短路保护

驱动器的IGBT短路保护使用VCE检测电路(参见图9),两个通道各自独立。短路保护功能只在IGBT 开通的时候有效;在IGBT 关断状态,触发信号会将Qce打开,使得Vcedt 钳位在COM_x,远低于保护触发值VRFF(10.2V),比较器不动作。

当驱动器执行 IGBT 开通动作时,传输到副边的触发信号会将 Qce 关断,释放 VceDT 钳位状态。此时 IGBT 的 VCE 仍处于高水平,将通过 Rvce 电阻串和 Ra 电阻对 Ca 电容进行充电,使得 VceDT 电平逐渐抬升。随后 IGBT 开通,Vce 迅速下降至 VceSAT,VceDT 也随之充电至 Vce-SAT。正常工作时,Vce-SAT 电压比较低,由于 Vce-SAT 远低于保护触发值 VREF,比较器不动作,保护不启动。

当驱动器发生短路时,IGBT 将迅速退饱和,VCE 很快回到高位,将通过 RVCE 电阻串和 RA 电阻对 CA 电容进行充电,使得 VCEDT 一直增长直到钳位至 VISOx(相对 VEx 为 +15V)。在此过程中,VCEDT 会越过 VREF(10.2V),使得比较器翻转,从而启动短路保护。

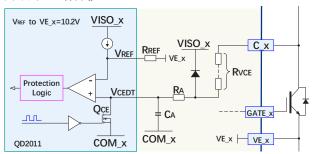


图 9 短路保护示意图

一类短路保护

当 IGBT 发生一类短路(即直通)时,由于直通电流增长很快,IGBT 将迅速退饱和,VCE 很快回到高位。因此 CA 将会一直充电,使得 VCEDT 一直增长直到钳位至 VISO_x(相对 VEx 为 +15V)。在此过程中,VCEDT 会越过 VREF(10.2V),使得比较器翻转,从而启动短路保护逻辑。

短路保护逻辑会先把IGBT迅速关断,保障IGBT的安全。同时向原边发出信息,使得SOx管脚拉低,以表达出保护状态。保护状态将会锁定一个tB时间,然后自动恢复到正常状态。

两个通道的保护电路是相互独立的,所以在一个通道发生短路保护的情况下,另一通道仍然能够工作在正常状态。控制系统需要及时检测 SO 信号,并根据策略发出系统闭锁命令(参见图 10)。

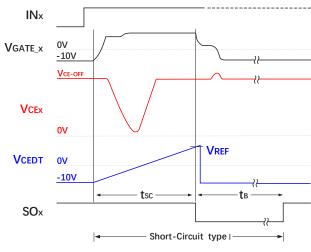


图 10 一类短路保护逻辑图

二类短路保护

当 IGBT 发生二类短路(相间短路)时,由于短路回路阻抗较大,电流增长较缓慢。IGBT 仍能正常进入饱和状态,然后随着短路电流的增加,VCE 逐渐增加直至退饱和(参见图 11)。驱动器只有在 IGBT 退饱和时才能检测出短路状态,启动短路保护。因此,二类短路保护的响应时间会比一类短路保护响应时间要更长。

当 IGBT 在低母线电压下发生直通短路时,由于母线电压低导致直通电流较小,IGBT 也会呈现与二类短路保护相同的特征,相应的保护响应时间也会加长。

注意: 二类短路时,由于短路回路阻抗随机性较大,使得 IGBT 退饱和时刻不确定性较大。因此在 IGBT 保护动作前,有可能已产生较大的热量损耗而导致 IGBT 损坏。即,此种状态下驱动区短路保护并不能保证 IGBT 不损坏,系统需辅以过流保护等其他手段,以保障 IGBT 的安全。

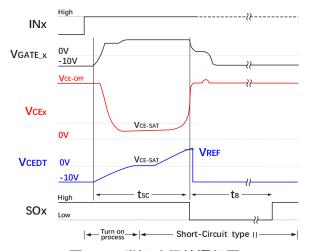
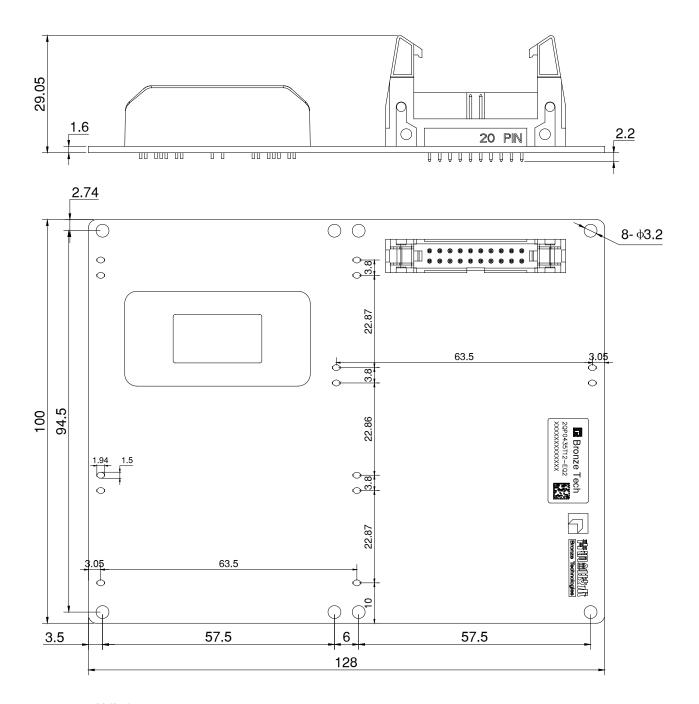



图 11 二类短路保护逻辑图

机械结构图

- 注: 1) 图示单位为 mm;
 - 2) 图中公差符合 ISO 2768-1

版本说明

版本号	变更内容	修订日期
V1.0	新发布	09-Nov-2019
V1.1	丰富介绍内容	02-Mar-2021
V1.2	说明书模板更新、内容规范化	05-Nov-2021
V1.3	增加接口示意图、机械图优化	11-Apr-2022

www.qtjtec.com

注意事项

• IGBT 模块和驱动器的任何操作,均需符合静电敏感设备保护的通用要求,请参考国际标准 IEC 60747-1/IX 或欧洲标准 EN100015。为保护静电感应设备,要按照规范处理 IGBT 模块和驱动器(工作场所、工具等都必须符合这些标准)。

如果忽略了静电保护要求,IGBT 和驱动器可能都会损坏!

- 驱动器上电前,请确认驱动器和控制板连接可靠,无空接、虚接、虚焊现象。
- 驱动器安装后, 其表面对大地电压可能会超过安全电压, 请勿徒手接触!

使用中,可能危及生命,务必遵守相关的安全规程!

免责声明

青铜剑技术提供的技术和可靠性数据(包括数据手册等)、设计资源(包括3D模型、结构图、AD模型)、应用指南、应用程序或其他设计建议、工具、安全信息和资源等,不包含所有明示和暗示的保证,包括对交付、功能、特定用途、适用性保证和不侵犯第三方知识产权的保证。

这些资源旨在为使用青铜剑技术产品进行开发的熟练工程师提供。为您全权负责:

- (1) 为您的产品选择适当的青铜剑技术产品;
- (2) 设计、验证和测试您的产品;
- (3) 确保您的产品符合适用的要求。

青铜剑技术保留随时修改数据、文本和资料的权力,恕不另行通知。请随时访问青铜剑技术网站www.gtitec.com或微信公众号,以获取最新的资料。

青铜剑技术授权您仅在应用青铜剑技术产品的开发过程,使用相应的资源,禁止以其他方式复制和展示这些资源。青铜剑技术没有通过这些资源,授予任何青铜剑技术的知识产权或第三方知识产权许可。

对于因您使用这些资源而引起的任何索赔、损害、损失和成本,青铜剑科技不承担任何责任,并且有 权追偿因侵犯知识产权而造成的损失。

青铜剑科技集团 | 深圳青铜剑技术有限公司

地址: 中国广东省 深圳市 南山区 留学生创业大厦二期 22 楼

官网: www.qtjtec.com

服务电话: +86 0755 33379866 服务邮箱: support@qtjtec.com

微信公众号